An Investigation on Synthesis of Silver Nanoparticles
Asian Journal of Research in Biochemistry, Volume 12, Issue 3,
Page 1-10
DOI:
10.9734/ajrb/2023/v12i3234
Abstract
Introduction: Nano science and nano biotechnology provided enormous opportunities for exploring the bactericidal and fungicidal activities. Since ancient times, silver was known for its anti-bacterial effects and for centuries it has been used for prevention and control of disparate infections. On the effective use silver nanomaterials synthesized and characterized play a vital role of the modern science.
Aims: Our goal is to prepare silver nanomaterials since studies have shown that silver nanoparticles have efficient activity against bacterial biofilms.
Methodology: The silver nanoparticles were generally synthesized by non-aqueous sol-gel technique in the presence of different precursor by chelating agent.
Results: Here found a cubic unit cell with miller indices (111) (200) (220) (311) (222) and crystallite size around 50.00nm by XRD. The morphology of the prepared nano particles has been revealed by SEM below 10.00 nm and TEM is below 5.00nm in size of graphical presentation such as size, shape, surface etc. of the nanoparticles. DLS is a unique technique to discern particle size around 65.00nm and size distributions in aqueous or physiological solutions of the nanoparticles.
Conclusion: The studies on the combined synthesized and use of AgNPs with other antimicrobial agents generally help reduce the problem of toxicity and to avoid the potential for development of resistance and strongly enhance the microbicidal effect. This paper describes a short and very precise description about the chemical synthesis process of silver nanoparticles like no aqueous SGM. Also, this paper contains a brief description about different characterization technique of nanoparticles like X-ray Diffraction review the shape of crystal a cubic unit cell with miller indices (111) (200) (220) (311) (222) where crystallite size around 50.00nm, the morphology of the prepared nanoparticles has been revealed with size 10.00nm by SEM, Dynamic Light Scattering discern particle size around 65.00nm and Transmission Electron Microscope review the spherical shape of the nanomaterials. Further investigation will be continuing the antimicrobial activity test of AgNPs with ceramic coating.
- Cell destruction (CD)
- silver nanoparticles (AgNPs)
- sol-gel method (SGM)
- TEM analysis (TA)
- XRD technique (XRDT)
How to Cite
References
Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4(5):366-77. DOI: 10.1038/nmat1368, PMID 15867920.
Zhao YS, Fu H, Peng A, Ma Y, Xiao D, Yao J. Low‐dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Adv Mater. 2008;20(15):2859-76. DOI: 10.1002/adma.200800604
Kim SN, Rusling JF, Papadimitrakopoulos F. Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater. 2007;19(20):3214-28. DOI: 10.1002/adma.200700665, PMID 18846263.
Wang Y, Cao G. Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem Mater. 2006;18(12):2787-804. DOI: 10.1021/cm052765h
Niemann MU, Srinivasan SS, Phanni AR, A, Goswami KDY, Stefanakos EK. J Nanomater. 2008:950967.
Lan R, Tao S. Preparation of nano-sized nickel as anode catalyst for direct urea and urine fuel cells. J Power Sources. 2011; 196(11):5021-6. DOI: 10.1016/j.jpowsour.2011.02.015
Ewing SJ, Lan R, Xu XX, Tao SW. Synthesis of dendritic nano‐sized nickel for use as anode material in an alkaline membrane fuel cell. Fuel Cells. 2010; 10(1):n/a-. DOI: 10.1002/fuce.200900102
Mallikarju K, Dillip GR, Narasimha G, Sushma NJ, Prasad Raj BD. Phytofabrication and Characterization of silver Nanoparticles from Piper betle Broth. Res J Nanosci Nanotechnol. 2012;2(1): 17-23. DOI: 10.3923/rjnn.2012.17.23
Schmid G, Chi LF. Metal clusters and colloids. Adv Mater. 1998;10(7):515-26. DOI:10.1002/(SICI)1521-4095(199805)10:7<515::AID-ADMA515>3.0.CO;2-Y.
Liu H, Ma D, Blackley RA, Zhou W, Bao X. Highly active mesostructured silica hosted silver catalysts for CO oxidation using the one-pot synthesis approach. Chem Commun (Camb). 2008;23(23):2677-9. DOI: 10.1039/b804641g, PMID 18535705.
Ramnani SP, Sabharwal S, Vinod Kumar J, Hari Prasad Reddy K, Rama Rao KS, Sai Prasad PS. Advantage of radiolysis over impregnation method for the synthesis of SiO2 supported Nano-Ag catalyst for direct decomposition of N2O. Cat Commun. 2008;9(5):756-61. DOI: 10.1016/j.catcom.2007.08.017
Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K. Antibacterial silver-containing silica glass prepared by sol–gel method. Biomaterials. 2000;21(4):393-8. DOI: 10.1016/s0142-9612(99)00201-x, PMID 10656321.
Kokkoris M, Trapalis CC, Kossionides S, Vlastou R, Nsouli B, Grötzschel R et al. RBS and HIRBS studies of nanostructured AgSiO2 sol–gel thin coatings. Nucl Instrum Methods Phys Res B. 2002;188(1-4):67-72. DOI: 10.1016/S0168-583X(01)01020-5
Balamurugan A, Balossier G, Laurent-Maquin D, Pina S, Rebelo AHS, Faure J, et al. An In vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dent Mater. 2008;24(10):1343-51. DOI: 10.1016/j.dental.2008.02.015, PMID 18405962.
Akhavan O, Ghaderi E. Enhancement of antibacterial properties of Ag nanorods by electric field. Sci Technol Adv Mater. 2009;10(1):015003. DOI: 10.1088/1468-6996/10/1/015003, PMID 27877266.
Huang Z, Jiang X, Guo D, Gu N. Controllable synthesis and biomedical applications of silver nanomaterials. J Nanosci Nanotechnol. 2011;11(11):9395-408. DOI: 10.1166/jnn.2011.5317, PMID 22413219.
Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals. 2011;24(1):135-41. DOI: 10.1007/s10534-010-9381-6, PMID 20938718.
Kumar S, Nehra M, Deep A, Kedia D, Dilbaghi N, Kim KH. Quantum-sized nanomaterials for solar cell applications. Renew Sustain Energy Rev. 2017;73: 821-39. DOI: 10.1016/j.rser.2017.01.172
Mokkapati S, Beck FJ, Polman A, Catchpole KR. Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Appl Phys Lett. 2009;95(5):053115. DOI: 10.1063/1.3200948
Luo Y, Hao J, Hou Z, Fu L, Li R, Ning P et al. Influence of preparation methods on selective catalytic reduction of nitric oxides by propene over silver–alumina catalyst. Cat Today. 2004;93-95: 797-803. DOI: 10.1016/j.cattod.2004.06.073
Yeom YH, Li M, Sachtler WM, Weitz E. Low-temperature NOx reduction with ethanol over Ag/Y: A comparison with Ag/γ-Al2O3 and BaNa/Y. Journal. Journal of Catalysis. 2007;246(2):413-27. DOI: 10.1016/j.jcat.2006.12.013
Volckmar CE, Bron M, Bentrup U, Martin A, Claus P. Influence of the support composition on the hydrogenation of acrolein over Ag/SiO2−Al2O3 catalysts. J Cat. 2009;261(1):1-8. DOI: 10.1016/j.jcat.2008.10.012
Quang DV, Sarawade PB, Hilonga A, Kim JK, Chai YG, Kim SH, et al. Preparation of silver nanoparticle containing silica micro beads and investigation of their antibacterial activity. Appl Surf Sci. 2011;257(15):6963-70. DOI: 10.1016/j.apsusc.2011.03.041
Niitsoo O, Couzis A. Facile synthesis of silver core-silica shell composite nanoparticles. J Colloid Interface Sci. 2011;354(2):887-90. DOI: 10.1016/j.jcis.2010.11.013, PMID 21145562.
Raffi M, Akhter JI, Hasan MM. Effect of annealing temperature on Ag nano-composite synthesized by sol–gel. Mater Chem Phys. 2006;99(2-3):405-9. DOI: 10.1016/j.matchemphys.2005.11.012
Pârvulescu VI, Cojocaru B, Pârvulescu V, Richards R, Li Z, Cadigan C, et al. Sol–gel-entrapped nano silver catalysts-correlation between active silver species and catalytic behavior. J Cat. 2010;272(1):92-100. DOI: 10.1016/j.jcat.2010.03.008
Yu L, Shi Y, Zhao Z, Yin H, Wei Y, Liu J, et al. Ultrasmall silver nanoparticles supported on silica and their catalytic performances for carbon monoxide oxidation. Cat Commun. 2011;12(7): 616-20. DOI: 10.1016/j.catcom.2010.12.012
Duhan S, Kishore N, Aghamkar P, Devi S. Preparation and characterization of sol–gel derived silver–silica nanocomposite. J Alloys Compd. 2010;507(1):101-4. DOI: 10.1016/j.jallcom.2010.07.107
Gutiérrez-Wing C, Pérez-Hernández R, Mondragón-Galicia G, Villa-Sánchez G, Fernández-García ME, Arenas-Alatorre J et al. Synthesis of silica–silver wires by a sol–gel technique. Solid State Sci. 2009;11(9):1722-9. DOI: 10.1016/j.solidstatesciences.2009.05.022
Andersson DI, Hughes D. Antibiotic resistance and its cost: Is it possible to reverse resistance? Nat Rev Microbiol. 2010;8(4):260-71. DOI: 10.1038/nrmicro2319, PMID 20208551.
Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, et al. Silver nanoparticles: Therapeutical uses, toxicity, and safety issues. J Pharm Sci. 2014;103(7):1931-44. DOI: 10.1002/jps.24001, PMID 24824033.
Lazar V. Quorum sensing in biofilms–how to destroy the bacterial citadels or their cohesion/ power? Anaerobe. 2011;17(6): 280-5. DOI: 10.1016/j.anaerobe.2011.03.023, PMID 21497662.
Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J. Innovative strategies to overcome biofilm resistance. BioMed Res Int. 2013;2013:150653. DOI: 10.1155/2013/150653, PMID 23509680.
De Melo WC, Avci P, De Oliveira MN, Gupta A, Vecchio D, Sadasivam M, et al. Photodynamic inactivation of biofilm: Taking a lightly colored approach to stubborn infection. Expert Rev Anti-Infect Ther. 2013;11(7):669-93. DOI: 10.1586/14787210.2013.811861, PMID 23879608.
Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, et al. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20(5):8856-74. DOI: 10.3390/molecules20058856, PMID 25993417.
Collins TL, Markus EA, Hassett DJ, Robinson JB. The effect of a cationic porphyrin on Pseudomonas aeruginosa biofilms. Curr Microbiol. 2010;61(5):411-6. DOI: 10.1007/s00284-010-9629-y, PMID 20372908.
Petit CT, Alsulaiman MS, Lan R, Mann G, Tao S. Preparation of silver nanoparticles by a non-aqueous sol–gel process. J Nanosci Nanotechnol. 2013;13(8):5445-51. DOI: 10.1166/jnn.2013.7446, PMID 23882777.
Das R, Nath SS, Chakdar D, Gope G, Bhattacharjee RJJON. Preparation of silver nanoparticles and their characterization. J Nanotechnol. 2009;5:1-6.
Waseda Y, Matsubara E, Shinoda K, Waseda Y, Matsubara E, Shinoda K. Diffraction from polycrystalline samples and determination of crystal structure. X-Ray Diffr Crystallogr Introduction Examples Solved Probl. 2011:107-67.
Ivanisevic I. Physical stability studies of miscible amorphous solid dispersions. J Pharm Sci. 2010;99(9):4005-12.
DOI: 10.1002/jps.22247, PMID 20533553.
Cabral M, Pedrosa F, Margarido F, Nogueira CA. End-of-life Zn–MnO2 batteries: Electrode materials characterization. Environ Technol. 2013;34(9-12):1283-95. DOI: 10.1080/09593330.2012.745621, PMID 24191461.
Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D. Characterization of microplasma sprayed hydroxyapatite coating. J Therm Spray Technol. 2009;18(4):578-92. DOI: 10.1007/s11666-009-9386-2
Ananias D, Almeida Paz FAA, Carlos LD, Rocha J. Chiral microporous rare-earth silico-germanates: synthesis, structure and photoluminescence properties. Micropor Mesopor Mater. 2013;166:50-8. DOI: 10.1016/j.micromeso.2012.04.032
Singh DK, Pandey DK, Yadav RR, Singh D. A study of ZnO nanoparticles and ZnO-EG nanofluid. J Exp Nanosci. 2013; 8(5):731-41. DOI: 10.1080/17458080.2011.602369
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. DOI: 10.3390/ijms17091534, PMID 27649147.
Cantor CR, Schimmel PR. Techniques for the study of biological structure and function; 1980.
Corrêa LM, Moreira M, Rodrigues V, Ugarte D. Quantitative structural analysis of AuAg nanoparticles using a pair distribution function based on precession electron diffraction: implications for catalysis. ACS Appl Nano Mater. 2021; 4(11):12541-51. DOI: 10.1021/acsanm.1c02978
Joshi M, Bhattacharyya A, Ali SW. Characterization techniques for nanotechnology applications in textiles; 2008.
Kadziola K, Celichowski G, Cichomski M, Szmaja W. Detection limits of DLS and UV–vis spectroscopy in characterization of polydisperse nanoparticles colloids; 2013.
Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci. 2008;101(2): 239-53. DOI: 10.1093/toxsci/kfm240, PMID 17872897.
Fissan H, Ristig S, Kaminski H, Asbach C, Epple M. Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal Methods. 2014;6(18):7324-34. DOI: 10.1039/C4AY01203H
Pleus R. Nanotechnologies-guidance on physicochemical characterization of engineered nanoscale materials for toxicologic assessment. Geneva, Switzerland: ISO; 2012.
Ratner B, Hoffman A, Schoen F, Lemons J. Biomaterials science. San Diego: Elsevier Academic Press; 2004.
Banala RR, Nagati VB, Karnati PR. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi J Biol Sci. 2015;22(5):637-44. DOI: 10.1016/j.sjbs.2015.01.007, PMID 26288570.
-
Abstract View: 77 times
PDF Download: 27 times