Determination of Antihypergycemic Effect of Flaxseed (L. usititatissimum) Fractions on Streptozotocin-induced Diabetic Rats

Adugbe Abigail *

Department of Biochemistry, College of Health Sciences, University of Jos, Nigeria.

Vongdip Nanman Godwin

Department of Biochemistry, College of Health Sciences, University of Jos, Nigeria.

Obot Blessing Uduakobong

Department of Biochemistry, College of Health Sciences, University of Jos, Nigeria.

Carol. D. Luka

Department of Biochemistry, College of Health Sciences, University of Jos, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

Diabetes is a metabolic disorder characterized by persistent high blood glucose level.  Flaxseed is one of the functional foods used in the management of diabetes mellitus. The study aimed to evaluate the effects of different fractions of Flaxseed on albino diabetic rats, and diabetes was induced using streptozotocin. The fractions were obtained using solvents with increasing polarity, namely n-Hexane, Ethylacetate, Methanol, and Water. The presence of various phytochemicals, including alkaloids, flavonoids, tannins, saponins, balsam, carbohydrates, phenols, and resins, were identified. The phytochemical analysis revealed that the methanolic fraction contained the highest concentration of bioactive components, followed by the aqueous fraction.  Significant reductions in blood glucose levels were observed across the groups treated with the Flaxseed fractions. The methanolic fraction exhibited the highest antihyperglycemic property (5.90±0.536), followed by the aqueous fraction (8.73±0.536). The hexane fraction ranked next to the aqueous fraction (20.50±1.617), while the ethylacetate fraction had the least antihyperglycemic effect (23.60±0.731). However, the protein and albumin biomarkers showed significant increase across all treatment groups. The Flaxseed fractions also demonstrated antihyperlipidemic properties, with the methanolic fraction being the most potent. Additionally, the treatment groups exhibited improved kidney function biomarkers, serum enzyme levels, and electrolyte levels. Based on the results of this investigation, Flaxseed proves to be a potent antihyperglycemic and antihyperlipidemic food. Moreover, the methanolic fraction demonstrated the greatest ameliorative effect, followed by the aqueous fraction.

Keywords: Flaxseed, diabetes, phytochemistry, antihyperglycaemic, antihyperlipidemic


How to Cite

Abigail , A., Godwin , V. N., Uduakobong , O. B., & Luka , C. D. (2023). Determination of Antihypergycemic Effect of Flaxseed (L. usititatissimum) Fractions on Streptozotocin-induced Diabetic Rats. Asian Journal of Research in Biochemistry, 13(1), 12–25. https://doi.org/10.9734/ajrb/2023/v13i1246

Downloads

Download data is not yet available.

References

Rizvi Q, Shams R, Pandey VK, Dar AH, Tripathi A, Singh R. A descriptive review on nutraceutical constituents, detoxification methods and potential health benefits of flaxseed. Appl Food Res. 2022; 2(2): 100239. DOI:10.1016/j.afres.2022.100239. Publisher Site | Google Scholar

Villarreal-Renteria AI, Herrera-Echauri DD, Rodríguez-Rocha NP, Zuñiga LY, Muñoz-Valle JF, García-Arellano S, Bernal-Orozco MF, Macedo-Ojeda G. Effect of flaxseed (Linum usitatissimum) supplementation on glycemic control and insulin resistance in prediabetes and type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 202: 102852. DOI:10.1016/j.ctim.2022.102852. Publisher Site | Google Scholar

Mbanya JC, Motala AA, Sobngwi E. Diabetes in Sub-Saharan Africa. Lancet. 2010;375:2254-2266. DOI:10.1016/S0140-6736(10)60550-8. Publisher Site | Google Scholar

Magliano DJ, Boyko EJ. IDF Diabetes Atlas 10th edition scientific committee. IDF Diabetes Atlas [Internet]. 10th edition. Brussels: International Diabetes Federation; 2021.

Available:https://www.ncbi.nlm.nih.gov/books/NBK581934/

Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-281. DOI:10.1016/j.diabres.2018.02. PMID: 29496507. Publisher Site | Google Scholar

American diabetes association. Standards of medical care in diabetes. Diabetes Care. 2014;37(Suppl.1):S14–S80. Publisher Site | Google Scholar

Wu T, Ding L, Andoh V, Zhang J, Chen L. The mechanism of hyperglycemia-induced renal cell injury in diabetic nephropathy disease: An update. Life (Basel). 2023: 15;13(2):539.

DOI:10.3390/life13020539. PMID:36836895; PMCID:PMC9967500. Publisher Site | Google Scholar

Chawla A, Chawla R, Jaggi S. Microvascular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546-551.

DOI:10.4103/2230-8210.183480. Publisher Site | Google Scholar

Matheus AS, Gomes MB. Early aggressive macrovascular disease and type 1 diabetes mellitus without chronic complications: A case report. BMC Res Notes. 2013;6:222.

DOI: 10.1186/1756-0500-6-222. Publisher Site | Google Scholar

Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2013;4:177.

DOI: 10.3389/fphar.2013.00177. Publisher Site | Google Scholar

Hutchins AM, Brown BD, Cunnane SC, Domitrovich SG, Adams ER, Bobowiec CE. Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: A randomized study. Nutr Res. 2013;33(5):367-375.

DOI:10.1016/j.nutres.2013.02.012. Publisher Site | Google Scholar

Parikh M, Netticadan T, Pierce GN. Flaxseed: Its bioactive components and their cardiovascular benefits. Am J Physiol Heart Circ Physiol. 2018;314:146-159.

DOI:10.1152/ajpheart.00467.2017. Publisher Site | Google Scholar

Parikh M, Maddaford TG, Austria JA, Aliani M, Netticadan T, Pierce GN. Dietary Flaxseed as a Strategy for Improving Human Health. Nutrients. 2019; 11(5): 1171. DOI:10.3390/nu11051171.

Publisher Site | Google Scholar

Austria JA, Aliani M, Malcolmson LJ, Dibrov E, Blackwood EP, Maddaford TG, Guzman R, Pierce GN. Daily food choices over one year when patient diets are supplemented with milled flaxseed. J Funct Foods. 2016;26:772-780.

DOI: 10.1016/j.jff.2016.08.031. Publisher Site | Google Scholar

Saxena S, Katare C. Evaluation of flaxseed formulation as a potential therapeutic agent in the mitigation of dyslipidemia. Biomed J. 2014;37(6): 386-90.

DOI:10.4103/2319-4170.126447. PMID: 25163498. Publisher Site | Google Scholar

Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M. Flax and flaxseed oil: An ancient medicine & modern functional food. J Food Sci Technol. 2014:51(9):1633-53.

DOI:10.1007/s13197-013-1247-9. Epub 2014. PMID: 25190822; PMCID: PMC4152533. Publisher Site | Google Scholar.

Rubilar M, Gutierrez C, Verdugo M, Shene C, Sinei J. Flaxseed as a source of functional ingredient. Journal of Soil Science and Plant Nutrition. 2010;10(3):373-377. Publisher Site | Google Scholar.

Prasad K, Khan AS, Shoker M. Flaxseed and its components in the treatment of hyperlipidemia and cardiovascular disease. The International Journal of Angiology: Official Publication of the International College of Angiology. Inc. 2020;29(4):216-222.

DOI:10.1055/s-0040-1709129. Publisher Site | Google Scholar.

Ashiq Hussain, Tusneem Kausar, Muhammad Abdullah Jamil, Saima Noreen, Khansa Iftikhar, Ayesha Rafique, Muhammad Azhar Iqbal, Muhammad Abid Majeed, Muhammad Yousaf Quddoos, Jawed Aslam, Atif Ali, "In vitro role of pumpkin parts as pharma-foods: Antihyperglycemic and antihyperlipidemic activities of pumpkin peel, flesh, and seed powders, in alloxan-induced diabetic rats", International Journal of Food Science. 2022;2022:10. Article ID 4804408.

DOI:https://doi.org/10.1155/2022/4804408 Publisher Site | Google Scholar

Adugbe Abigail, Vongdip Nanman Godwin, Obot Blessing Uduakobong, Carol D. Luka. Assessment of antihyperglycemic effect of nut fractions of vigna Subterranea on streptozotocin-induced diabetic rats. Int.J. Res Pub and Rev. 2023;4(6)3360-3371. Publisher Site | Google Scholar.

Godwin VN, Abigail A, Uduakobong OB, Luka CD. Evaluation of the antidiabetic effect of aqueous crude extract of seed, leaf and stem of Linum usitatissimum on streptozotocin-induced diabetic rats. AJRB [Internet]. 2023;12(4):42-57.

Available:https://journalajrb.com/index.php/AJRB/article/view/244

Khalid S, Shahzad A, Basharat N, Abubakar M, Anwar P. Phytochemical Screening and Analysis of Selected Medicinal Plants in Gujrat. J Phytochemistry Biochem. 2018;2:108.

Rojas, Fuensanta Sánchez, Catalina Bosch Ojeda, José Manuel Cano Pavón. Spectrophotometry | Biochemical Applications;2013.

Roberto Macrelli, Math; Marcello Ceccarelli M, Biol; Letizia Fiorucci. Journal of Herpetological Medicine and Surgery. 2013;23(1-2):20–24.

Jagroop Singh1, Dr. Sukhraj Kaur1, Manjinder Kaur2, Dr. Manpreet Kaur. A comparative study of detection of serum total and direct bilirubin by manual and automated methods. International Journal of Scientific Research in Science and Technology. 2022;9(4)209-212.

Lipid Laboratory Johns Hopkins. Total Cholesterol, HDL-Cholesterol, Triglycerides, and LDL-Cholesterol. Laboratory Procedure Manual. 2004;23.

Yassin MM, Altibi HI, El Shanti AE. Clinical and biochemical features of type 2 diabetic patients in Gaza Governorate, Gaza Strip. West African Journal of Medicine. 2011;30(1):51-56. Publisher Site | Google Scholar.

Collaborative Laboratory Services, L.L.C. Alanine Amino Transferase (ALT) Laboratory Procedure Manual. 2007; 1-10.

Akcakaya H, Aroymak A, Gokce SA. Quantitative colorimetric method of measuring alkaline phosphatase activity in eukaryotic cell membranes. Cell Biol Int. 2007;31(2):186-90.

DOI: 10.1016/j.cellbi.2006.11.014. Epub 2006 Nov 28. PMID: 17207647.

Yilmaz S, Uysal HB, Avcil M, Yilmaz M, Dağlı B, Bakış M, Ömürlü IK. Comparison of different methods for measurement of electrolytes in patients admitted to the intensive care unit. Saudi Med J. 2016 Mar;37(3):262-7.

DOI: 10.15537/smj.2016.3.13539. PMID: 26905347; PMCID: PMC4800889.

Gounden V, Bhatt H, Jialal I. Renal Function Tests. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan.

Available:https://www.ncbi.nlm.nih.gov/books/NBK507821/

Clarkson JM, Martin JE, McKeegan DEF. A review of methods used to kill laboratory rodents: Issues and opportunities. Laboratory Animals. 2022;56(5):419-436.

DOI:10.1177/00236772221097472. Publisher Site | Google Scholar.

Governa P, Baini G, Borgonetti V, Cettolin G, Giachetti D, Magnano AR, Miraldi E, Biagi M. Phytotherapy in the management of diabetes: A Review. Molecules. 2018;4;23(1):105.

DOI:10.3390/molecules23010105. Publisher Site | Google Scholar.

Farag MA, Ali SE, Hodaya RH, El-Seedi HR, Sultani HN, Laub A, Eissa TF, Abou-Zaid FOF, Wessjohann LA. Phytochemical profiles and antimicrobial activities of Allium cepa Red cv. and A. sativum subjected to different drying methods: A comparative MS-based metabolomics. Molecules. 2017;22:761.

DOI:10.3390/molecules22050761. Publisher Site | Google Scholar.

Ogunmodede OS, Saalu LC, Ogunlade B, Akunna GG, Oyewopo AO. An Evaluation of the hypoglycemic, antioxidant and hepatoprotective potentials of onion (Allium cepa L.) on alloxan-induced diabetic rabbits. International Journal of Pharmacology. 2012;8:21-29. Publisher Site | Google Scholar.

Kim SH, Jo SH, Kwon YI, Hwang JK. Effects of onion (Allium cepa L.) extract administration on intestinal α-glucosidases activities and spikes in postprandial blood glucose levels in SD rats model. International Journal of Molecular Sciences. 2011;12:3757-3769.

DOI: 10.3390/ijms12063757. Publisher Site | Google Scholar.

Gautam S, Pal S, Maurya R, Srivastava AK. Ethanolic extract of Allium cepa stimulates glucose transporter type 4-mediated glucose uptake by the activation of insulin signaling. Planta Medica. 2015;81:208-214.

DOI: 10.1055/s-0034-1396201. Publisher Site | Google Scholar

Sikarwar MS, Patil MB. Antidiabetic activity of pongamia pinnata leaf extracts in alloxan-induced diabetic rats. International Journal of Ayurveda Research. 2010; 1(4):199-204.

DOI: 10.4103/0974-7788.76780. Publisher Site | Google Scholar.

Shehadeh MB, Suaifan GARY, Abu-Odeh AM. Plants secondary metabolites as blood glucose-lowering molecules. Molecules. 2021;26(14):4333.

DOI: 10.3390/molecules26144333. PMID: 34299610; PMCID: PMC8307461. Publisher Site | Google Scholar

Mujeeb F, Bajpai P, Pathak N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. Biomed Res Int. 2014;2014:497606.

DOI: 10.1155/2014/497606. PMID: 24900969; PMCID: PMC4037574. Publisher Site | Google Scholar.

Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules. 2020 11;25(22):5243.

DOI:10.3390/molecules25225243. PMID: 33187049; PMCID: PMC7697716. Publisher Site | Google Scholar

Yeram PB, Kulkarni YA. Glycosides and vascular complications of diabetes. Chemistry & Biodiversity. 2022;19(10): e202200067.

DOI: 10.1002/cbdv.202200067. Publisher Site | Google Scholar

Luka CD, Istifanus G, George M, Philip CJ. The effect of aqueous extract of citrus sinensis peel on some biochemical parameters in normal and alloxan-induced diabetic wistar rats. Am. J. of Phytomed. Clin. Ther. 2017;5(2):17. Publisher Site | Google Scholar.

Bikash Adhikari. Roles of alkaloids from medicinal plants in the management of diabetes mellitus. Journal of Chemistry. 2021;10. Article ID 2691525. DOI:https://doi.org/10.1155/2021/2691525 Publisher Site | Google Scholar.

Dai J, Mumper RJ. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15:7313-7352. Publisher Site | Google Scholar.

Xu J, Wang S, Feng T, Chen Y, Yang G. Hypoglycemic and hypolipidemic effects of total saponins from stauntonia chinensis in diabetic db/db mice. J Cell Mol Med. 2018;22(12):6026-6038.

DOI: 10.1111/jcmm.13876. PMID: 30324705; PMCID: PMC6237556. View at: Publisher Site | Google Scholar.

Okwu DE, Josiah C. Evaluation of the chemical composition of two Nigerian medicinal plants. African Journal of Biotechnology. 2006;5(4):357-361. View at: Publisher Site | Google Scholar.

Mueed A, Shibli S, Korma SA, Madjirebaye P, Esatbeyoglu T, Deng Z. Flaxseed bioactive compounds: Chemical composition, functional properties, food applications and health benefits-related gut microbes. Foods. 2022;11(20):3307.

DOI:https://doi.org/10.3390/foods11203307 View at: Publisher Site | Google Scholar.

Grundy MM, Edwards CH, Mackie AR, Gidley MJ, Butterworth PJ, Ellis PR. Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. Br J Nutr. 2016;116(5): 816-33.

DOI: 10.1017/S0007114516002610. PMID: 27385119; PMCID: PMC4983777. View at: Publisher Site | Google Scholar.

Giuntini EB, Sardá FAH, de Menezes EW. The effects of soluble dietary fibers on glycemic response: An overview and future perspectives. Foods. 2022;11(23):3934.

DOI: 10.3390/foods11233934. PMID: 36496742; PMCID: PMC9736284. View at: Publisher Site | Google Scholar.

Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4(1):177-97.

DOI: 10.1002/cphy.c130024. PMID: 24692138; PMCID: PMC4050641. View at: Publisher Site | Google Scholar.

Sanvictores T, Casale J, Huecker MR. Physiology, fasting. [Updated 2022 Jul 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan.

Available:https://www.ncbi.nlm.nih.gov/books/NBK534877/ View at: Publisher Site | Google Scholar.

Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, Martín C. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020;21(17):6275.

DOI: 10.3390/ijms21176275. PMID: 32872570; PMCID: PMC7503727. View at: Publisher Site | Google Scholar

Kajla P, Sharma A, Sood DR. Flaxseed-a potential functional food source. J Food Sci Technol. 2015;52(4):1857-71.

DOI: 10.1007/s13197-014-1293-y. PMID: 25829567; PMCID: PMC4375225. View at: Publisher Site | Google Scholar.

Shim YY, Gui B, Arnison PG, Wang Y, Reaney MJ. Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends in Food Science & Technology. 2014;38(1):5-20.

DOI:https://doi.org/10.1016/j.tifs.2014.03.011 View at: Publisher Site | Google Scholar

Nwogo Ajuka Obasi, Kalu Mong Kalu, Uchechukwu Okorie, Glory Otuchristian. Hypoglycemic effects of Aqueous and Methanolic Leaf Extracts of Vitex doniana on Alloxan-Induced Diabetic Albino Rats. Journal of Medical Sciences. 2013:700-707. View at: Publisher Site | Google Scholar.

Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos University Medical Journal. 2012;12(1), 5-18.

DOI:https://doi.org/10.12816/0003082 View at: Publisher Site | Google Scholar

Huff T, Boyd B, Jialal I. Physiology, Cholesterol. [Updated 2023 Mar 6]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan.

Available:https://www.ncbi.nlm.nih.gov/books/NBK470561/ View at: Publisher Site | Google Scholar.

Linton MRF, Yancey PG, Davies SS, et al. The role of lipids and lipoproteins in atherosclerosis. [Updated 2019 Jan 3]. In: Feingold KR, Anawalt B, Blackman MR et al. editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000.

Available:https://www.ncbi.nlm.nih.gov/books/NBK343489/ View at: Publisher Site | Google Scholar.

Rodriguez-Leyva D, Dupasquier CM, McCullough R, Pierce GN. The cardiovascular effects of flaxseed and its omega-3 fatty acid, alpha-linolenic acid. Can J Cardiol. 2010;26(9):489-96.

DOI:10.1016/s0828-282x(10)70455-4. View at: Publisher Site | Google Scholar

Lowe D, Sanvictores T, Zubair M, et al. Alkaline Phosphatase. [Updated 2022 Nov 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan.

Available:https://www.ncbi.nlm.nih.gov/books/NBK459201/ View at: Publisher Site | Google Scholar.

Adesokan AA, Oyewole OI, Turay BMS. Kidney and liver function parameters in alloxan-induced diabetic rats treated with aloe barbadensis juice extract. Sierra Leone Journal of Biomedical Research. 2009;1(1):33-37. View at: Publisher Site | Google Scholar.

Li L, Li H, Gao Y, Zhang X, Yang M. Effect of flaxseed supplementation on blood pressure: A systematic review and dose-response meta-analysis of randomized clinical trials. Food & Function. 2023; 14(10).

DOI:10.1039/d2fo02566c. View at: Publisher Site | Google Scholar.

Molitoris BA, Levin A, Warnock DG, Joannidis M, Mehta RL, Kellum JA, Shah SV. Improving outcomes of acute kidney injury: Report of an initiative. Nature Clinical Practice Nephrology. 2007;3(8):439-442. View at: Publisher Site | Google Scholar.

Yassin MM, Altibi HI, Shanti AEEl. Clinical and biochemical features of type 2 diabetic patients in Gaza Governorate, Gaza Strip. West African Journal of Medicine. 2011;30(1)51–56. View at: Publisher Site | Google Scholar.

Luka CD, Mohammed A. Evaluation of the antidiabetic property of aqueous extract of Mangifera indica leaf on normal and alloxan-induced diabetic rats. J. Nat. Prod. Plant Resour. 2012;2(2):239-243. View at: Publisher Site | Google Scholar.

Al Za'abi M, Ali H, Ali BH. Effect of flaxseed on systemic inflammation and oxidative stress in diabetic rats with or without chronic kidney disease. PLoS One. 2021;16(10):e0258800.

DOI:10.1371/journal.pone.0258800. PMID: 34665824; PMCID: PMC8525749.

Lemos JR, Alencastro MG, Konrath AV, Cargnin M, Manfro RC. Flaxseed oil supplementation decreases C-reactive protein levels in chronic hemodialysis patients. Nutr Res. 2012;32(12):921-7.

DOI: 10.1016/j.nutres.2012.08.007. Epub 2012 Sep 26. PMID: 23244537.

Rafiu AA, Luka CD. Evaluation of the antidiabetic property of aqueous extract of ipomoea batata leaf on hyperglycemia, hyperlipidemia, blood electrolytes and enzymatic antioxidants of streptozotocin induced diabetic rats. J Res Diabetes Metab. 2018;4(1):021-026.

Ashafa OT, Yakubu MT, Grierson DS, Afolayan AJ. Toxicological evaluation of the aqueous extract of Felicia muricata Thunb. Leaves in Wistar Rats. African Journal of Biotechnology. 2018;8:949-54.